SJIF 2020: 6.224 IFS 2020 4.085

RELATIONSHIP BETWEEN COMMON MARKERS OF INFLAMMATION AND RENAL DISEASE AMONG APPARENTLY HEALTHY HIV PATIENTS IN BENIN CITY, NIGERIA. Godwin Aigbedo Aikpitanyi-Iduitua¹, Nosakhare Lawrence Idemudia^{2,4*}, Rosemary Osamede Aikpitanyi-Iduitua³ and Richard Omoregie^{2,4}

¹Department of Education, Medical Laboratory Science Council of Nigeria, Abuja, Nigeria, ²Medical Microbiology Division, Medical Laboratory Services, University of Benin Teaching Hospital, Benin City, Nigeria, ³Department of Physiology, School of Basic Medical Sciences, University of Benin, Benin City, Nigeria and ⁴School of Medical Laboratory Sciences, University of Benin Teaching Hospital, Benin City, Nigeria.

*Corresponding Author: Email - lawnosa@gmail.com; Phone number - +2348039258854 ABSTRACT

Renal impairment is one of the frequent complications of HIV infection. The relationships between some common markers of inflammation and chronic kidney disease (CKD) have recently been investigated but not in HIV patients. Therefore, this study aims to determine the relationship between these markers of inflammation and renal disease among apparently healthy HIV patients in Benin City, Nigeria. Blood samples were collected and used to estimate the levels of some inflammatory markers (such as Albumin, CD4 count, neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and systemic immune-inflammatory index (SII)) and some biochemical parameters such as electrolytes, urea, creatinine and estimated glomerular filtration rate (eGFR) among 173 participants comprising 81 HIV patients on Highly Active Antiretroviral Therapy (HAART), 44 HAART-naïve HIV patients attending out-patients clinics in the University of Benin Teaching Hospital, Benin City and 48 non-HIV individuals (Controls). All participants were asymptomatic. Healthy control subjects had significantly (p<0.05) higher haematocrit and haemoglobin concentration than their HIV-positive counterparts The MCH, MCV, and MCHC values of HIV patients on HAART were significantly higher than those of their HAART-naive counterparts and healthy control subjects (p<0.05). There was no significant difference (p>0.05) in total white blood cell count, neutrophil counts, lymphocyte counts, platelet counts, mean platelet volume, neutrophil-lymphocyte ratio and systemic immune-inflammatory index. HAART-naïve HIV patients had significantly higher NLR, PLR and SII (P<0.05) and significantly lower CD4 count and albumin (P<0.0001) than other study groups. The eGFR of HIV patients on HAART were markedly higher than those of HAART-naïve HIV patients (p<0.05) and healthy controls (p<0.01). The prevalence of CKD was 9.09%, 8.64% and 0% among HAART-naïve HIV patients and HIV patients on HAART and non-HIV subjects, respectively. A significant negative correlation was observed between some inflammatory markers (NLR, PLR and SII) and eGFR among HAART-naïve HIV patients. This study underscores inflammation as a possible cause of renal failure among asymptomatic HAART-naïve HIV patients.

Keywords: Chronic Kidney Disease; HIV infection, HAART, Inflammation, Asymptomatic

INTRODUCTION

SJIF 2020: 6.224 IFS 2020 4.085

Human Immunodeficiency Virus (HIV) causes an inflammatory disease that impacts every organ and system in the body either directly or by making the host more vulnerable to opportunistic infections with the lungs, brain, heart, stomach, kidney, skin, and lymphoid tissues being the most often impacted organs.^[1] The burden of chronic renal disease is a global public health phenomenon with more effects in developing countries, and it has become one of the frequent complications of HIV infection, occurring in 3.5 - 48.5%, and a leading cause of death in AIDS patients.^{[2],[3]}

Numerous studies have demonstrated that HIV as an inflammatory disease can impair the kidneys directly or indirectly, causing thrombotic microangiopathy, immunological complex kidney disease, and HIV-associated nephropathy.^{[4]-[7]} Furthermore, prolonged antiretroviral therapy (ART) use or the presence of opportunistic infections and other diseases resulting from HIV immunosuppression might cause renal impairment in HIV patients.^[8] In a healthy state, the kidneys support immunological homeostasis. In contrast, immune system elements play a significant role in chronic kidney disease and mediate many acute types of renal disease. An immune system that is out of balance may directly or indirectly affect the kidneys.^[9] HIV, like many other infections, including systemic autoimmune disorders, involves immune complex accumulation in the glomerulus.^[10] Under this phenomenon, several antibodies are gathered around their target antigen. Due to their sizes, these complexes frequently collect in the glomerulus and become stuck within different glomerular filtration barrier compartments based on their charge. Complex complexes may occasionally form when a target antigen external to the kidney becomes trapped within the glomerular basement membrane because of its relatively small size and positive charge. Similarly, apoptotic cell nucleosomes from HIV pathogenesis may become entrapped in the negatively charged glomerular basement membrane.^[11]

The gold standard for determining renal function is to measure glomerular filtration rate (GFR) using an exogenous agent; however, these methods are either expensive or may take too long to make initial dosing recommendations in the context of an acute illness, like the use of antibiotics for an infection unlike the requirement for 24-hour urine collection, so they are not frequently used in standard clinical practice.^[12] Also, serum creatinine, the most straightforward and common clinical marker for determining renal function, is commonly influenced by age, gender, weight, and muscle mass.^[13] This has necessitated the development of different methods for estimating GFR (eGFR) and using endogenous biomarkers for renal assessment, especially in HIV care in resource-limited settings. Some common inflammatory indicators and their relationship to the progression of CKD have been explored.^{[14]-[16]} However, to our knowledge, there is a paucity of data on this in HIV patients. Therefore, this study aims to determine the relationship between inflammation and renal disease surrogate markers among apparently healthy HIV patients in Benin City, Nigeria.

MATERIALS AND METHODS

Study population

One hundred and twenty-five HIV patients were recruited for the study at the University of Benin Teaching Hospital in Benin City, Edo State, Nigeria. Of the 125 HIV patients, 81 had previously begun treatment with Highly Active Antiretroviral Therapy (HAART), whereas the remaining 44 were yet to begin treatment and were classified as HAART-naive. The study also included 48 participants who were HIV seronegative and apparently healthy individuals. All HIV patients were asymptomatic out-patients attending HIV clinics in the University of Benin Teaching Hospital, Benin City, Nigeria, without signs and symptoms of any infection or diseases, and were not on any medication other than

SJIF 2020: 6.224

IFS 2020 4.085

HAART (for those on HAART), while their HIV seronegative counterparts were from the surrounding community. Informed consent was obtained from all participants before specimen collection. The Ethical Committee of Edo State Ministry of Health, Benin City, Nigeria, approved the protocol for this study.

Sample collection and processing

Six millilitres (6ml) of blood sample was aseptically drawn from each of the participants by venipuncture; 3ml of the blood sample was dispensed into Ethylene diamine tetra-acetic acid (EDTA) anticoagulant container and mixed properly to avoid clotting which was used for full blood count and CD4 analysis while the remaining 3ml was dispensed into a plain container and allowed to clot. Serum was separated from the clotted blood sample in the plain container and used for biochemical analysis.

Full Blood Count Analysis

Full blood count (complete blood count) was determined with the EDTA blood sample using a haematology auto-analyser (Sysmex K2IN, Sysmex Corporation, Kobe, Japan) following the manufacturer's instructions.

Inflammatory Markers

Some basic inflammatory markers such as neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and systemic immune-inflammatory index (SII) were calculated from the obtained parameter of the Full Blood Count as previously described by Idemudia *et al.* and Zhang *et al.*^{[17],[18]} Briefly, NLR was calculated as the ratio of the neutrophils count to lymphocyte counts; PLR was calculated as the ratio of the platelets counts to lymphocyte counts; and the SII was defined as: SII = neutrophil x platelet/lymphocyte.

CD₄ Cell Count Estimation

Flow cytometry was used for the CD4 cell count estimation using the Partec Cyflow Counter II® (Partec, Gmbh, Germany) following the manufacturer's instructions. Briefly, 20 μ l of whole blood was placed in a Partec tube, and 20 μ l of CD4+ T cell monoclonal antibodies was added. The mixture was then incubated in the dark for 15 minutes at room temperature, after which 800 μ l of buffer was added. The tube was then placed in the flow cytometer for counting, and the CD4+ T cells value was obtained from a programmed computer connected to the instrument.

Biochemical Analysis

Sera samples were used to determine the following biochemical parameters – Albumin, urea, creatinine, bicarbonate and chloride using Selectra ProS chemistry auto analyzer® (Vital Scientific Inc., Germany) following the manufacturer's instructions while sodium and potassium were analysed using Audicom AC 9800 ISE® (ion selective electrode) analyser following the manufacturer's instructions.

Estimation of the Glomerular Filtration Rate (eGFR)

Estimated GFR was determined using the CKD-EPI creatinine equation as previously described by Mula-Abed *et al.*^[19] with an eGFR online calculator available at: <u>https://ukidney.com/nephrology-resources/egfr-calculator</u>. Patients with values <60ml/min.1.73m² were regarded to have CKD.

SJIF 2020: 6.224

IFS 2020 4.085

Statistical analysis

The non-parametric data were analysed with Chi (X^2) and the parametric data were analysed with ANOVA and correlation using the statistical software INSTAT® (Graph Pad Inc., La Jolla, CA, USA).

RESULTS

There were significantly (p=0.021) more males in the healthy control population (58.33%) compared with the HIV patients – HAART-naïve, 40.91% and those on HAART, 24.69%). The healthy controls were younger (30.36 ± 10.07 years) than HAART-naïve HIV patients (40.68 ± 9.63 years; p<0.001) as well as those on HAART (41.19 ± 11.57 years; p<0.001).

The outcome of laboratory tests obtained in this study is summarised in Figures 1 and 2 below. Healthy control subjects had significantly (p<0.05) higher haematocrit and haemoglobin concentrations than their HIV-positive counterparts (Fig 1a and 1b). The MCH, MCV and MCHC (Fig 1c - 1e) values of HIV patients on HAART were significantly higher than those of their HAART-naive counterparts and healthy control subjects (p<0.05). There was no significant difference (p>0.05) in total white blood cell count, neutrophil counts, lymphocyte counts, platelet counts, mean platelet volume, neutrophillymphocyte ratio and systemic immune-inflammatory index (Fig 1f - 1k, 1m). Platelet-lymphocyte ratio (Fig 11) was significantly higher among HAART-naïve HIV patients compared with healthy controls (p<0.05), whereas CD4 counts and albumin levels were significantly lower in HAART-naïve HIV patients than HIV patients on HAART and healthy controls (P,0.001) (fig 10 and 1p). Serum creatinine and sodium levels were significantly lower in HIV patients on HAART than in HAARTnaïve and non-HIV patients (Fig. 2 a&b). Bicarbonate levels were significantly higher in the control group than in the other group of participants, whereas chloride levels were the opposite as it was substantially lower in the control group than in HAART-naïve HIV patients and HIV patients on HAART (Fig. 2 d and e). Although there was no significant difference in potassium levels among the study groups, urea levels were significantly higher in HAART-naïve HIV patients than in non-HIV patients (Fig. 2c and 2f, respectively).

The eGFR for the study subjects, as shown in Figure 3, reveal that eGFR of HIV patients on HAART were significantly higher than those of HAART-naïve HIV patients (p<0.05) and Healthy controls (p<0.01) (Fig 3).

The study also examined the prevalence of chronic kidney disease (CKD) using the cut-off value from the eGFR. Although 9.09% of the HAART-naïve HIV patients had CKD, there was no significant difference in the prevalence of CKD among the study groups (p=0.1043) (Table 1).

The correlation of eGFR with the studied markers of inflammation and some biochemical parameters reveals that there was a significant negative correlation between eGFR and NLR, PLR, SII, urea and creatinine amongst HAART-naïve HIV patients whereas, in HIV patients on HAART, only urea and creatinine were observed to have significant negative correlations. Among healthy controls, CD4 count and creatinine significantly negatively correlated with eGFR (Table 2).

info@journalofresearch.org

SJIF 2020: 6.224 IFS 2020 4.085

Fig 1i: Platelet count of participants

Fig 1b: Haemoglobin concentration of participants

Fig 1c: Mean cell haemoglobin of participants

Fig 1d: Mean Cell Volume of participants

Fig 1g: Lymphocyte count of participants

Fig 11: Platelet-lymphocyte ratio of participants

Fig 1: The levels of haematological parameters and markers of inflammation a

Mean plate On HABET Non-HIV HAARI

Fig 1j: Mean platelet volume of participants

÷.

Fig 2: The levels of Electrolytes, urea and creatinine amongst study participants

0 HAART-naive On HAART Healthy control 50 100 eGFR (mL/min.1.73m2) 150 200 250 . 300 5 P<0.01 6 P<0.05 : 350 HAART-naive On HAART Healthy control

SJIF 2020: 6.224 IFS 2020 4.085

Fig 3: Box and whisker plot of eGFR values among the study subjects (Box and Whisker plot was generated using an online tool available at: https://www.statskingdom.com/advanced-boxplot-maker.html)

SJIF 2020: 6.224

	IFS	2020	4 085
--	-----	------	-------

Participants	No. tested	No. with CKD (%)
HAART-naïve	44	4 (9.09)
On HAART	81	7 (8.64)
Healthy control	48	0 (0.00)

p= 0.1043

SJIF 2020: 6.224

IFS 2020 4.085

Table 2: Correlation of eGFR with markers of inflammation and some biochemical

Parameters	HAART-naïve	ON HAART	Healthy Control
	(n= 44)	(n= 81)	(n=48)
Platelet count	r=-0.2190	r=0.1364(p>0.0	r=-0.1997
$(x10^{3}/\mu L)$	(p>0.05)	5)	(p>0.05)
Mean platelet	r=0.0131	r=-0.1396	r=0.0359
volume (fL)	(p>0.05)	(p>0.05)	(p>0.05)
Neutrophil-	r=-0.3202	r=-0.0266	r=-0.0347
lymphocyte ratio	(p<0.05)*	(p>0.05)	(p>0.05)
Platelet-lymphocyte	r=-0.3412	r=-0.0302	r=-0.0656
ratio	(p<0.05)*	(p>0.05)	(p>0.05)
Systemic immune-	r=-0.305	r=0.0463	r=-0.0886
inflammation index	(p<0.05)*	(p>0.05)	(p>0.05)
CD4 count	r=0.0585	r=0.1121	r=-0.2957
(cells/µL)	(p>0.05)	(p>0.05)	(p<0.05)*
Albumin (g/dL)	r=0.0125	r=0.0195	r=0.2515
	(p>0.05)	(p>0.05)	(p>0.05)
Urea (mmol/L)	r=-0.4331	r=-0.2195	r=0.2767
	(p<0.005)*	(p<0.05)*	(p>0.05)
Creatinine (µmol/L)	r=-0.5263	r=-0.7873	r=-0.7796
	(p<0.001)*	(p<0.001)*	(p<0.001)*

SJIF 2020: 6.224 IFS 2020 4.085

DISCUSSION

In this study, there was an observed significantly higher haematocrit and haemoglobin concentration levels in the healthy control group compared to the other groups; this finding agrees with previous reports.^{[20],[21]} Anaemia is believed to be a significant prognostic indicator of HIV disease progression, and anaemia in HIV infection has a variety of root causes varying from the death of red blood cells (hemolysis) or inefficient generation of red blood cells; loss of blood as a result of gastrointestinal lesions arising from opportunistic infections or neoplastic illness; vitamin B12, folate, or iron deficiency as well as immune dysregulation during HIV infection.^[22] This study also showed that the haemoglobin concentration of HIV patients on-HAART is significantly higher than that of HAART-naïve HIV patients. This agrees with the findings of Dengue et al.^[23] which reported that HAART treatment helps reduce the prevalence of anaemia since it suppresses viral replication, thereby reducing HIV viral burden. The observed significantly higher mean cell volume (MCV), mean cell haemoglobin concentration (MCHC), and lymphocyte percentage count in HIV patients on-HAART in this study also agrees with some previous reports.^{[24],[25]} The significant increase in MCV, MCHC and lymphocytes is an indication that the HAART regimen in HIV patients is effective in improving the quality of life of HIV patients and reducing the incidence of anaemia, which is one of the primary adverse outcomes of HIV infection especially as elevated MCV has been previously reported to be associated with the use of zidovudine (AZT) or stavudine (d4T).^[25]

Low albumin levels in HIV-infected patients has been linked to increased mortality and a quick transition to AIDS, and albumin has been reported to be a measure of inflammation.^{[26],[27]} Also, it has been reported that GFR and renal function are both affected by low serum albumin levels.^[28] In this study, HAART-naive HIV patients' serum albumin levels were shown to be considerably lower than those of HAART-treated HIV patients and non-HIV participants. This would suggest that HIV patients who have never used HAART are more likely to experience renal failure than those on HAART. Although there is no significant correlation between eGFR and albumin amongst all the study groups, reports have shown that starting HAART considerably raises serum albumin levels which may have accounted for the higher albumin level in HIV patients on HAART in this study.^[29] The finding that HAART-naïve HIV patients had significantly lower CD4 count than HIV patients on HAART and non-HIV subjects agree with previous reports.^{[20],[21],[27]} It implies that the HAART regime reduces inflammation in HIV patients.

Elevated MCV could be associated with the use

SJIF 2020: 6.224 IFS 2020 4.085

of zidovudine (AZT) or stavudine (d4T)

Elevated MCV could be associated with the use

of zidovudine (AZT) or stavudine (d4T)

Elevated MCV could be

associated with the use

HIV is known to be an inflammatory disease and causes chronic inflammation. The significantly higher levels of NLR, PLR and SII in HAART-naïve HIV patients in this study confirm this. However, there is a paucity of data comparing these markers among our study groups especially relating it to CKD. NLR, PLR, and SII are biomarkers capable of predicting systemic inflammation. They have recently gained interest because they are widely available markers that can be calculated from simple blood counts and show prognostic significance for several diseases and outcomes, including chronic kidney disease.^{[16],[30]} Also, looking at the significantly lower eGFR, in HAART-naïve HIV patients and the higher prevalence of CKD in this group, it follows that the high inflammation resulting from HIV infection has a significant impact in causing CKD. The significant negative correlation between eGFR and these markers, alongside urea and creatinine in HAART-naïve HIV patients observed in this study, further confirms the fact that HIV infection causes inflammation which can lead to chronic kidney disease. Also, the fact that numerous studies have shown that starting HAART for HIV patients with CKD results in an overall improvement in renal function backs the findings in this study, where there was a higher eGFR in HIV patients on HAART and no correlation between the studied inflammatory markers with eGFR in HIV patients on HAART.^{[2],[31]}

Our study had limitations, including the small sample size from a single site. In the future, it is advised to do a prospective, randomised study that entails tracking the long-term outcome. Another drawback is that the research did not collect data on the risk variables for

SJIF 2020: 6.224

IFS 2020 4.085

CKD. Moreso, we could not modify the models to account for the timing of immunosuppression, bone marrow condition, or the use of other drugs.

In conclusion, this study has shown a relationship between some common markers of inflammation and renal disease in HIV infection and that this inflammation and renal impairment is more in HAART-naïve HIV patients as effective HAART usage is known to decrease adverse outcomes in HIV infection, including renal impairment.

SJIF 2020: 6.224 IFS 2020 4.085

REFERENCES

1. Torre D, Speranza F and Martegani R. Impact of highly active antiretroviral therapy on organ-specific manifestations of HIV-1 infection. *HIV Med.* 2005; 6: 66–78.Fabian and Naicker, 2009;

2. Fabian J, Naicker S. HIV and kidney disease in sub-Saharan Africa. *Nat Rev Nephrol*. 2009; 5: 591–598.

3. Wyatt CM. The Renal in HIV Infection: Beyond HIV-Associated Nephropathy. *Top Antivir Med.* 2012; 20(3):106–110.

4. Post FA, Holt SG. Recent developments in HIV and the kidney. Curr Opin Infect Dis 2009;22:43-8.

5. Young F, Critchley JA, Johnstone LK, Unwin LC. A review of co-morbidity between infectious and chronic disease in Sub Saharan Africa: TB and diabetes mellitus, HIV and metabolic syndrome, and the impact of globalisation. *Global Health*. 2009;5:9 doi: 10.1186/1744-8603-5-9

6. Rosenberg AZ, Naicker S, Winkler CA, Kopp JB. HIV-associated nephropathies: epidemiology, pathology, mechanisms and treatment. Nat Rev Nephrol. 2015;11(3):150-60. doi: 10.1038/nrneph.2015.9.

7. Ellis CL. HIV associated kidney diseases: Clarifying concordance between renal failure in HIV infection and histopathologic manifestations at kidney biopsy. Seminars in Diagnostic Pathology. 2017;34(4):377-383. DOI: 10.1053/j.semdp.2017.04.009. PMID: 28578979.

8. Bertoldi A, De Crignis E, Miserocchi A, Bon I, Musumeci G, Longo S, D'Urbano V, La Manna G, Calza L, Re MC. HIV and Kidney: A Dangerous Liaison. *The New Microbiologica* 2017;40, 1–10.

9. Tecklenborg J, Clayton D, Siebert S, Coley SM. The role of the immune system in kidney disease. Clin Exp Immunol. 2018;192(2):142-150. doi: 10.1111/cei.13119.

10.Linke A, Tiegs G, Neumann K. Pathogenic T-Cell Responses in Immune-MediatedGlomerulonephritis. Cells, 2022;11(10):http://dx.doi.org/10.3390/cells11101625

11. Kurts C, Panzer U, Anders HJ, Rees AJ. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 2013;13:738–53.

12. Ebert N, Bevc S, Bökenkamp A, Gaillard F, Hornum M, Jager KJ, Mariat C, Eriksen BO, Palsson R, Rule AD, van Londen M, White C, Schaeffner E. Assessment of kidney function: clinical indications for measured GFR. Clin Kidney J. 2021;14(8):1861-1870. doi: 10.1093/ckj/sfab042.

13. Lu L, Li X, Liu X, Han Y, Qiu Z, Song X, Li Y, Li X, Cao W, Li T. Comparison of Renal Function Biomarkers of Serum Creatinine and Cystatin C in HIV-Infected People on Dolutegravir-Containing Therapy. Infect Drug Resist. 2022;15:1695-1706. doi: 10.2147/IDR.S347054.

14. Imig JD, Ryan MJ. Immune and Inflammatory Role in Renal Disease. *Compr. Physiol.* 2013;3:957–976. doi: 10.1002/cphy.c120028.

SJIF 2020: 6.224

IFS 2020 4.085

15. Yuan Q, Wang J, Peng Z, Zhou Q, Xiao X, Xie Y, Wang W, Huang L, Tang W, Sun D, Zhang L, Wang F, Zhao MH, Tao L, He K, Xu H; C-STRIDE study group. Neutrophilto-lymphocyte ratio and incident end-stage renal disease in Chinese patients with chronic kidney disease: results from the Chinese Cohort Study of Chronic Kidney Disease (C-STRIDE). J Transl Med. 2019;17(1):86. doi: 10.1186/s12967-019-1808-4.

16. Muresan AV, Russu E, Arbănasi EM, Kaller R, Hosu I, Arbănasi EM, Voidăzan ST. The Predictive Value of NLR, MLR, and PLR in the Outcome of End-Stage Kidney Disease Patients. *Biomedicines* 2022; 10, 1272

17. Idemudia NL, Ogefere HO, Omoregie R. Use of some surrogate markers of inflammation as predictor of malaria severity. J Microbol Infect Dis 2021;11(04): 201-8. https://doi.org/10.5799/jmid.1036763

18. Zhang Z, Zhou Y, Hu K, Huang Y. Investigating effects of preoperative inflammatory biomarkers on predicting survival outcomes of intrahepatic cholangiocarcinoma after curative resection. World J Surg Oncol. 2020 Oct 23;18(1):272. doi: 10.1186/s12957-020-02053-w.

19. Mula-Abed WA, Al Rasadi K, Al-Riyami D. Estimated Glomerular Filtration Rate (eGFR): A Serum Creatinine-Based Test for the Detection of Chronic Kidney Disease and its Impact on Clinical Practice. Oman Med J. 2012;27(2):108-13. doi: 10.5001/omj.2012.23.

20. Omoregie R, Omokaro EU, Palmer O, Ogefere HO, Egbeobauwaye A, Adeghe JE, Osakue SI, Ihemeje V. Prevalence of anaemia among HIV-infected patients in Benin City, Nigeria. *Tanzania Journal of Health Research*. 2009;11(1)

21. Ngwu AM, Eneh JC. Haematological Changes in HIV Subjects Receiving Antiretroviral Treatment in Enugu State University of Science and Technology Teaching Hospital, Enugu, Nigeria. *African Journal of Health Sciences* 2022;35(4): 417-425

22. Harding BN, Whitney BM, Nance RM, Ruderman SA, Crane HM, Burkholder G, Moore RD, Mathews WC, Eron JJ, Hunt PW, Volberding P, Rodriguez B, Mayer KH, Saag MS, Kitahata MM, Heckbert SR, Delaney JAC. Anemia risk factors among people living with HIV across the United States in the current treatment era: a clinical cohort study. *BMC Infect Dis* 2020;20: 238. https://doi.org/10.1186/s12879-020-04958-z

23. Denue BA, Kida IM, Hammagabdo A, Dayar A, Sahabi MA. Prevalence of Anemia and Immunological Markers in HIV-Infected Patients on Highly Active Antiretroviral Therapy in Northeastern Nigeria. Infect Dis (Auckl). 2013;6:25-33. doi: 10.4137/IDRT.S10477.Owiredu WK, Quaye L, Amidu N, Addai-Mensah O. Prevalence of anaemia and immunological markers among ghanaian HAART-naïve HIV-patients and those on HAART. Afr Health Sci. 2011;11(1):2-15.

24. Owiredu WK, Quaye L, Amidu N, Addai-Mensah O. Prevalence of anaemia and immunological markers among ghanaian HAART-naïve HIV-patients and those on HAART. Afr Health Sci. 2011;11(1):2-15.

25. Moyle G. Anaemia in persons with HIV infection: prognostic marker and contributor to morbidity. AIDS Rev. 2002;4:13-18.

SJIF 2020: 6.224

IFS 2020 4.085

26. Soeters PB, Wolfe RR, Shenkin A. Hypoalbuminemia: Pathogenesis and Clinical Significance. JPEN J Parenter Enteral Nutr. 2019; 43(2):181-193.

27. Balgi V, Arun Nayak V, Suneetha DK, Prashantha B. Study of serum albumin level in subjects with HIV infection, in relation to CD4 count, as a marker of immune suppression. *International Journal of Contemporary Medical Research* 2019;6(12): 11 - 13

28. Lang J, Scherzer R, Tien PC, Parikh CR, Anastos K, Estrella MM, Abraham A, Sharma A, Cohen MH, Butch AW, Nowicki M, Grunfeld C, Shlipak MG.Serum albumin and kidney function decline in HIV-infected women. *American Journal of Kidney Diseases* 2014;64(4): 584–591.

29. Ronit A, Sharma S, Baker JV, Mngqibisa R, Delory T, Caldeira L, Ndembi N, Lundgren JD, Phillips AN. Serum albumin as a prognostic marker for serious nonAIDS endpoints in the Strategic Timing of Antiretroviral Treatment (START) study. *Journal of Infectious Diseases* 2018;217: 405 – 412

30. Ozdemir A, Kocak SY, Karabela SN, Yılmaz M. Can systemic immune inflammation index at admission predict in-hospital mortality in chronic kidney disease patients with SARS-CoV-2 infection?, *Nefrología* 2022;42(5):549-558, https://doi.org/10.1016/j.nefroe.2021.09.009.

31. Naicker S, Rahmanian S, Kopp JB. HIV and chronic kidney disease. Clin Nephrol. 2015;83(7):32-8. doi: 10.5414/cnp83s032.